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We propose microscopic density functional theory for inhomogeneous star polymer fluids. Our approach is
based on fundamental measure theory for hard spheres, and on Wertheim’s first- and second-order perturbation
theory for the interparticle connectivity. For simplicity we consider a model in which all the arms are of the
same length, but our approach can be easily extended to the case of stars with arms of arbitrary lengths.
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It has been demonstrated that density functional theory
�DFT� is a versatile and powerful tool by which to represent
the structural and thermodynamic properties of polymeric
fluids �1–6�. Taking into account the level of the physical
model, DFT’s of polymers can be divided into two main
categories. The first category �1,2� involves the so-called
coarse-graining procedure �7�, in which the degrees of free-
dom of monomers building the polymer coils are integrated
out. The resulting effective pairwise potential between the
centers of masses of two molecules is then used in further
investigations �8�. An advantage of these models emerges
from the possibility of application of theories of simple fluids
to describe the polymers.

It is obvious that coarse-grained models lose some infor-
mation, e.g., a possibility of evaluation of correlation func-
tions between the monomers. From this point of view, mod-
els of the second category �5,6,9–12�, which explicitly treat
the microscopic structure of polymers, seem to be superior.
Several microscopic DFT approaches for inhomogeneous
chain polymers have been proposed in the literature. Wood-
ward and Yethiraj �3–5� developed a theory that combines
weighted density approximation, known from theories of
simple fluids, with single-chain Monte Carlo simulations. An
alternative DFT of inhomogeneous polymer solutions was
formulated by Forsman, Woodward, and Freasier �11�. Their
theory is based on the free energy functional resulting from
the generalized Flory equation of state and was extended to
the case of inhomogeneous solutions of star polymers �12�.
However, from the numerical point of view, a very conve-
nient approach was developed by Yu and Wu �6�. This ap-
proach is based on Rosenfelds’ fundamental measure theory
�FMT� �13� and on Wertheim’s first-order thermodynamic
perturbation theory �TPT1�. The theory of Yu and Wu allows
for performing quite complex studies because it does not
require single-chain Monte Carlo simulations and yields a
fully analytical equation of state. This approach �6� has been
successfully applied to investigate adsorption, surface phase
transitions and capillary condensation in systems involving
chain particles �14–16�. It was also extended to the case of
inhomogeneous semiflexible and cyclic polyatomic fluids

�9�, as well as to binary hard-rod-polymer mixtures �17�.
A few years ago Blas and Vega �18� proposed an exten-

sion of the associating fluid theory for bulk systems involv-
ing branched chain molecules. According to their model,
branched molecules are built of chain segments �arms� of
tangentially bonded hard spheres connected via articulation
vertices, each of them formed by f arms. The excess Helm-
holtz free energy due to the chain connectivity is separated
into two contributions, one accounting for the formation of
the articulation vertex, and a second one due to the formation
of the arms. The first term has been described by the second-
order thermodynamic perturbation theory �TPT2�, whereas
the formation of chain arms are via TPT1. The principal aim
of this work is to generalize the bulk theory of Blas and Vega
to the case of inhomogeneous systems. We consider the sim-
plest case of molecules with one articulation vertex. The gen-
eralization is carried out by utilizing the formalism of Yu and
Wu �6�, derived for chain polymers.

We consider an inhomogeneous fluid composed of star
molecules, i.e., each molecule is built of a spherical “head”
�articulation vertex�, and f arms tangentially attached to it.
Each arm is just a chain of Mf tangentially jointed segments.
Although the numbers Mf can be different, in this paper we
study the case in which all the arms are of the same length,
M �Mf, so that the total number of segments within a mol-
ecule is N= fM +1. All the segments are hard spheres of di-
ameter �. The bonding potential Vb�R� is defined so that
g�R�=exp�−�Vb�R�� is

g�R� = �
i=1

f
���r0 − r1

�i�� − ��
4��2 �

j=1

M−1
���r j+1

�i� − r j
�i�� − ��

4��2 , �1�

where R= �r0 , �r j
�i�	� with i=1,2 , . . . , f and j=1,2 , . . . ,M de-

notes the set of segment positions. The articulation vertex is
labelled by the subscript 0. All remaining segments are la-
belled by the superscript �specifying arm� and the subscript
�specifying the position within a given arm�. The grand po-
tential of the system � is as a functional of the local density
of polymers, ��R�,*Electronic address: pawel@paco.umcs.lublin.pl
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����R�� = Fid���R�� + Fex���R�� +
 dR��R��Vext�R� − �� ,

�2�

where � is the configurational chemical potential, Vext
is the external potential, �Fid���R��=��dR��R�Vb�R�
+�dR��R��ln���R��−1� is the ideal part of the free energy
and Fex is the excess free energy. The external potential is a
sum of the potentials acting on each segment, Vext�R�
=v0�r0�+�i=1

f � j=1
M v j

�i��r j
�i��. We further assume that the excess

free energy is a functional of the average segment local den-
sity defined as

�s�r� = �0�r� + �
i=1

f

�
j=1

M

� j
�i��r� =
 dR��r − r0���R�

+ �
i=1

f

�
j=1

M 
 dR��r − r j
�i����R� , �3�

where � j
�i��r� and �0�r� are local densities of segment “j

within the arm i ” and of the articulation segment, respec-
tively.

Following Yu and Wu �6� we decompose the excess free
energy as

�Fex†�s�r�‡ =
 dr�	HS„�n
�r�	… + 	C„�n
�r�	…� , �4�

where 	HS results from the hard-sphere repulsion between
segments, and 	C is the contribution due to the connectivity.
Each of these contributions is a function of four scalar and
two vector weighted densities �6,13�. For the hard-sphere
contribution 	HS we use the White-Bear theory, see Refs.
�19,20� for the explicit formula.

Wertheim’s perturbation theory for a bulk fluid �22� can
be naturally incorporated into the DFT framework �21�. The
generalization for inhomogeneous star polymer systems is
represented by the expression �18,23�

	C„�n
�r�	… = 	arm
„�n
�r�	… + 	art

„�n
�r�	… , �5�

where 	arm and 	art are the contributions due to the forma-
tion of chains within consecutive arms and due to the forma-
tion of the articulation vertex. The equation for 	arm follows
from the theory of Yu and Wu �6�,

	arm
„�n
�r�	… =

1 + f − N

N
n0� ln�yHS„�,�n
�r�	…� , �6�

where �=1−nV2 ·nV2 / �n2�2, and the contact value of the
hard-sphere cavity function, yHS���, results from the
Carnahan-Starling equation of state, cf. Eq. �18� of Ref. �6�.
Free energy density 	art is obtained by generalizing the
theory of Blas and Vega �18,23�,

	art
„�n
�r�	… = 	TPT1

art
„�n
�r�	… + 	TPT2

art
„�n
�r�	… , �7�

where 	TPT1
art and 	TPT2

art represent the first

	TPT1
art

„�n
�r�	… = −
f

N
n0� ln�yHS„�,�n
�r�	…� , �8�

and the second-order perturbation terms �18,22�

	TPT2
art = ln 1 + 4� − ln

�1 + 1 + 4�� f+1 − �1 − 1 + 4�� f+1

2 f+1 .

�9�

In the above � depends on the number of arms and its evalu-
ation requires the knowledge of the f-body correlation func-
tion for f spheres in contact. In the case of f =3 the applica-
tion of the superposition approximation yields �= �1+an3

+bn3
2� / �1−n3�3−1, where a and b are constant that depend

on the angles between the arms attached to the articulation
vertex �18,22,23�. In the case of bulk fluids n3 is just the
packing fraction. Approximation proposed for inhomoge-
neous system relies on substitution of the bulk packing frac-
tion by the weighted density n3. Note that this approximation
is not unique. One can follow the ideas of Yu and Wu �20�
and propose an approximation involving, besides scalar, also
vector weighted densities. In this work, however, we decided
to apply as simple expression, as possible.

Within the TPT1 approach the bulk thermodynamic prop-
erties of the star polymers are the same as the properties of
chains built of the same number of segments. This is because
the first-order perturbation free energy takes into account
only the number of segment connections and neglects poly-
mer’s topology. The latter is included within the TPT2 ap-
proach, cf. Eq. �15� of Ref. �18�. However, the identity of the
bulk thermodynamic properties within the TPT1 theory does
not imply that the structure of inhomogeneous fluids of star
polymers and of chains with the same number of segments,
that results from DFT, is identical.

Minimization of �2� yields

��R� = g�R�exp��� − �0�r0� − ��
i=1

f

�
j=1

M

 j
�i��r j

�i��� , �10�

where  j
�i��r j

�i��=�Fex /��s�r j
�i��+v j

�i��r j
�i�� and 0�r0�

=�Fex /��s�r0�+v0�r0�. For systems with the density distribu-
tion varying only in the z direction Eqs. �3� and �10� lead to
the following expressions for the segment density profiles:

�0�z0� = exp�����0�z0�„GM+1�z0�… f �11�

and

� j
�i��zj

�i�� = exp����� j
�i��zj

�i��GM+1−j�zj
�i��G̃ j+1�zj

�i�� , �12�

where � j
�i��z�=exp�−� j

�i��z��; �0�z���0
�i��z�. The functions

Gi�z� are defined by the recurrence relation �6�

G j�z� =
 dz�� j
�i��z��

��� − �z − z���
2�

G j−1�z�� , �13�

for j=2, . . . ,M with Gi�z��1. In the above � is the unit-step

function. The functions G̃j�z�, however, are given by
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G̃2�z� =
 dz��0�z��
��� − �z − z���

2�
„GM+1�z��… f−1, �14�

for j=2 and

G̃ j�z� =
 dz�� j
�i��z��

��� − �z − z���
2�

G̃ j−1�z�� , �15�

for j�2. The equations given above are valid for the stars
with arms of identical length. In such a case the profiles
� j

�i��z� are independent of the arm index i. A generalization of
the theory to the case of stars with arms of different length is
straightforward. For example, the integrand in the last equa-
tion would involve a product of the functions
GM1+1�z��GM2+1�z��¯, instead of (GM+1�z��) f−1 �here Mi’s
abbreviate the number of segments within consecutive arms�.
As a simple application of the theory we calculate density
profiles of star molecules built of hard-sphere segments near
a hard wall, located at z=0. The solutions of the density
profile equations were obtained by using the standard itera-
tional procedure.

In Fig. 1 we compare the average segment density profiles
resulting from theory with computer simulations �24� for star
polymers built of f =3 arms, each composed of M =5 seg-
ments. The calculations were carried out for bulk segment
packing fractions �sb=��sb�3 /6=0.1, 0.2, and 0.3, where
�sb is the bulk average segment density. The density profiles
in Fig. 1 have been normalized by the bulk density �sb. For
�sb=0.2 and 0.3 we show two sets of the DFT results. The
first one has been evaluated employing the TPT1 approach
�i.e., the term given in Eq. �9� has been neglected�, whereas
the second set was obtained using TPT1 and TPT2 contribu-
tions to the free energy. The differences between the local
densities resulting from these two approximations are small

and occur only within the region adjacent to the wall. The
TPT2 contribution leads to smaller contact values of the av-
erage segment local density. This effect is quite obvious,
because the TPT2 correction lowers the pressure. The agree-
ment between theoretical predictions and computer simula-
tions is reasonable.

Figure 2 compares the density profiles for three-armed
star polymers �resulting from the TPT1 approach� with the
profiles of chain polymers built of the same number of seg-
ments obtained from the approach of Yu and Wu �6�. The
results are for bulk average segment densities �sb

* =�sb�3

=0.2 and 0.6 and for two model systems with different total
number of segments N=13 and N=61. For N=13 each star
polymer arm is composed of M =4 segments, whereas for
N=61 each arm consists of M =20 segments. In the upper
panels we compare the average segment densities normalized
to unity. We find that for higher bulk density �sb

* =0.6 �the
upper right-hand-side panel� the local densities �s�z� of
chains and stars are quite similar. The profiles are dominated
by packing effects. Larger differences between the profiles of
the star and chain polymer fluids are visible at lower density,
�sb

* =0.2, cf. the upper left-hand-side panel. Note that the
contact values of �s�z� for star and chain polymers are iden-
tical in our TPT1 approach. Lower panels of Fig. 2 show the
density profiles of selected segments for the same systems.
We plot here the profiles of “heads” �in the case of chains the
profiles of the first segment� and the profiles of the segments

FIG. 1. The average segment density profiles of star polymers
�f =3,M =5� evaluated for the bulk segment packing fraction �sb

=0.1, 0.2, and 0.3. Symbols represent computer simulations �24�,
dashed lines denote DFT results obtained using TPT1 and dots de-
note DFT results evaluated using TPT1 and TPT2 contributions.

FIG. 2. Upper panels, the average segment density profiles of
star polymers �dashed-dotted lines� and of chains �solid lines� cal-
culated for the total number of segments N=13 and N=61. The
results for N=61 are shifted up by 0.2. Lower panels, the segment
density profiles of the articulation segment �circles� and of its near-
est neighbor �squares� of star polymers and of the first �solid lines�
and the second �dashed lines� segment of chains. In the left panels,
�sb

* =0.2, whereas �sb
* =0.6 in the right panels.
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attached directly to the “heads.” The differences between the
profiles for the chain and star polymers are now more pro-
nounced, especially for the profiles of the “heads.” We have
also inspected the profiles for the segments that are topologi-
cally more distant from the head and have found that the
difference between them becomes gradually smaller.

Finally, Fig. 3 presents the profiles of the stars built of the
same number of segments, but having different number of
arms. We have considered the models with f =3,M =20 and
with f =4,M =15. It is not surprising that the difference be-
tween the average segment density profiles �cf. Fig. 3�a�� is
now less pronounced than in the case of the profiles dis-
played in Fig. 2, because the differences in the topology of
the particles are now smaller. However, the differences be-
tween the individual segment density profiles still persist, cf.
Fig. 3�b�, where we show the profiles of “heads” and the
segments directly attached to heads.

In conclusion, in this work we propose density functional
theory for inhomogeneous star polymers. Although the
theory is written down for the case of arms composed of
identical numbers of segments, its generalization for stars
with arms of different length is straightforward. Several fur-
ther extensions are also possible. In particular it would be of
interest to consider cases of physically different “head” and
“arm” segments in order to mimic the systems involving
surfactants. Some of these topics are already under study in
our laboratory.
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FIG. 3. �a� The average segment density of star polymers with
f =3 and M =20 �dashed line� and with f =4 and M =15 �solid line�
for two bulk densities, �sb

* =0.2 and �sb
* =0.4. �b� The segment den-

sity profiles of “heads” �solid and dashed-dotted lines� and it’s first
neighbor �dashed and dotted lines� for the same models. The bulk
segment density is �sb=0.4.
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